Interesting story out of the Biophysical Society’s 56th Annual Meeting.
Several neurodegenerative diseases – including Alzheimer’s and ALS (Lou Gehrig’s disease) – are caused when the body’s own proteins fold incorrectly, recruit and convert healthy proteins to the misfolded form, and aggregate in large clumps that gum up the works of the nervous system. Now scientists have developed an algorithm that can predict which regions of a protein are prone to exposure upon misfolding, and how mutations in the protein and changes in the cellular environment might affect the stability of these vulnerable regions. These predictions help scientists gain a better understanding of protein dynamics, and may one day help in developing treatments to effectively combat currently incurable neurodegenerative diseases.
The algorithm uses the energy equations of thermodynamics to calculate the likelihood that certain stretches of protein will be displayed when the protein misfolds. Since the exposed regions are specific to the misfolded version of the protein, researchers can use these regions as targets for diagnostic and therapeutic treatments. The algorithm can be adapted for different proteins and predicts several potential target regions for each protein. The group has used it to study neurodegenerative disease-causing proteins as well as misfolded proteins that have been implicated in some cancers.
Tags: biotechnology, Proteomics